DAD-3DHeads: Results

The results of DAD-3DNet trained on DAD-3DHeads Dataset and evaluated on

  • 3D Head Pose Estimation and 3D Face Shape Reconstruction benchmarks,

  • DAD-3DHeads Benchmark for 3D Head Estimation from dense annotations

suggest that dense supervision as provided in the dataset enables a holistic framework for 3D Head Analysis from images.

3D Head Pose Estimation results

DAD-3DNet largely outperforms the 3DMM estimation methods, and shows comparable performance to other SOTA methods.

BIWI Benchmark

Model
MAE
Pitch MAE
Roll MAE
Yaw MAE
HopeNet
4.90
6.61
3.27
4.81
Img2Pose
3.79
3.55
3.24
4.57
3DDFA-V2
8.81
12.08
7.54
6.80
RingNet
7.34
5.37
7.82
8.82
WHENet
3.81
4.39
3.06
3.99
DAD-3DNet
3.87
5.25
2.77
3.60

AFLW2000-3D Benchmark

Model
MAE
Pitch MAE
Roll MAE
Yaw MAE
HopeNet
6.16
6.56
5.44
6.47
RetinaNet
6.22
9.64
3.92
5.10
Img2Pose
3.91
5.03
3.28
3.43
SynergyNet
3.35
4.09
2.55
3.42
3DDFA-V2
7.56
8.48
9.89
4.30
RingNet
8.27
4.39
13.51
6.92
DAD-3DNet
3.63
4.73
3.19
2.98

3D Face Shape Reconstruction results

DAD-3DNet shows superior performance to the coarse 3D dense head alignment methods without explicitly disentangling Shape and Expression

NoW Benchmark (to be updated)

Model
Median (mm)
Mean (mm)
Std (mm)
3DDFA-V2
1.234
1.566
1.391
RingNet
1.207
1.535
1.306
DAD-3DNet
1.236
1.541
1.285

Feng et al. Benchmark

Model
3DRMSE
Median - HQ (mm)
Median - LQ (mm)
Mean - HQ (mm)
Mean - LQ (mm)
Std - HQ (mm)
Std - LQ (mm)
3DDFA-V2
2.998
1.500
1.779
1.942
2.350
1.704
2.149
RingNet
2.809
1.698
1.634
2.161
2.113
1.832
1.831
DAD-3DNet
2.718
1.523
1.634
1.957
2.096
1.691
1.808